In vivo production of an anti-HIV antibody from primate hematopoietic cells by non-viral knock-in
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Non-viral gene editing offers a practical alternative to viral delivery for durable biologics production. Clinical trials have shown that adeno-associated virus encoding broadly neutralizing antibodies can protect against HIV, but result in limited, short-lived responses. The development of non-viral gene editing approaches in hematopoietic stem and progenitor cells holds promise for long-term antibody production. In this study, we evaluated CRISPR/Cas9 and CRISPR/Cas12a for gene knock-in at the immunoglobulin heavy chain locus in non-human primate hematopoietic stem and progenitor cells. Delivering the nuclease as a protein alongside a custom DNA template, we optimized editing with Cas12a and demonstrated higher knock-in efficiency and fewer non-specific edits than Cas9. Transplantation of edited non-human primate hematopoietic stem and progenitor cells into MISTRG mice led to engraftment, B cell differentiation, and transgene expression of a reporter transgene or anti-HIV antibody after HIV immunization with detectable anti-HIV antibody titers in peripheral blood circulation. These findings demonstrate the feasibility of using non-viral gene editing in HSPC as a potential strategy for sustained biologics production in the treatment of chronic diseases such as HIV. Future work will assess the efficacy of this model in a non-human primate model of HIV infection.