Quantitative Pharmacology Methods for Bispecific T Cell Engagers
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
T Cell Engager (TCE)s are an exciting therapeutic modality in immuno-oncology that acts to bypass antigen presentation and forms a direct link between cancer and immune cells in the Tumor Microenvironment (TME). TCEs are efficacious only when the drug is bound to both immune and cancer cell targets. Therefore, approaches that maximize the formation of the drug-target trimer in the TME are expected to increase the drug’s efficacy. In this study, we quantitatively investigate how the concentration of ternary complex and its biodistribution depend on both the targets’ specific properties and the design characteristics of the TCE, and specifically on the binding kinetics of the drug to its targets. A simplified mathematical model of drug-target interactions is considered here, with insights from the “three-body” problem applied to the model. Parameter identifiability analysis performed on the model demonstrates that steady state data, which is often available at the early pre-clinical stages, is sufficient to estimate the binding affinity of the TCE molecule to both targets. We used the model to analyze several existing antibodies, both clinically approved and under development, to explore their common kinetic features. The manuscript concludes with an assessment of a full quantitative pharmacology model that accounts for drug disposition into the peripheral compartment.