Spatiotemporal Analysis of Remyelination Reveals a Concerted Interferon-Responsive Glial State That Coordinates Immune Infiltration
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Remyelination, the process by which axons are re-encased in myelin after injury, is a critical step in restoring brain function, yet the dynamics from initial injury to repair remain poorly characterized. Here, we combined optimized single-nucleus RNA-seq with Slide-seqv2, a high-resolution spatial transcriptomics technology, to densely reconstruct the cellular processes that coordinate remyelination after a focal demyelinating injury. This revealed several findings: First, we found extensive transcriptional diversity of glia and monocyte-derived macrophages from demyelination to repair. Second, we identified a population of infiltrating peripheral lymphocytes—predominantly CD8 T-cells and natural killer cells—that are enriched specifically during remyelination. Third, we identified a concerted interferon-response gene signature that is shared across several cell types—microglia, astrocytes, and the oligodendrocyte lineage—just prior to reestablishment of myelin. These interferon-responsive glia (IRG) form clusters around remyelinating white matter and their formation is solely dependent on the type I interferon receptor. Functionally, we found that IRG secrete the cytokine CXCL10 which mediates infiltration of peripheral lymphocytes into the repairing white matter. Depletion of the most abundant infiltrating lymphocyte, CD8 T-cells, attenuated the differentiation of mature oligodendrocytes during remyelination. Together, our data reveals the diversity of glial-immune interactions that orchestrate white matter repair and a type I-dependent glial state that drives lymphocyte influx into damaged white matter to modulate oligodendrocyte differentiation.