TNIP1 and Autophagy Receptors regulate STING Signaling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Activation of the cGAS-STING pathway stimulates innate immune signaling as well as LC3B lipidation and ubiquitylation at Golgi-related vesicles upon STING trafficking. Although ubiquitylation at these subcellular sites has been associated with regulating NF-κB-related innate immune signaling, the mechanisms of Golgi-localized polyubiquitin chain regulation of immune signaling is not well understood. We report here that the ubiquitin– and LC3B-binding proteins, TNIP1 and autophagy receptors p62, NBR1, NDP52, TAX1BP1, and OPTN associate with STING-induced ubiquitin and LC3B-labeled vesicles, and that p62 and NBR1 act redundantly in spatial clustering of the LC3B-labeled vesicles in the perinuclear region. We also find that while TBK1 kinase activity is not required for the recruitment of TNIP1 and the autophagy receptors, it also plays a role in sequestration of the LC3B-labeled vesicles. The ubiquitin binding domains, rather than the LC3B-interacting regions, of TNIP1 and OPTN are specifically important for their recruitment to Ub/LC3B-associated perinuclear vesicles, while OPTN is also recruited through a TBK1-dependent mechanism. Functionally, we find that TNIP1 and OPTN play a role in STING-mediated innate immune signaling, with TNIP1 acting as a significant negative regulator of both NF-κB– and Interferon-mediated gene expression. Together, these results highlight autophagy-independent mechanisms of autophagy receptors and TNIP1 with unanticipated roles in regulating STING-mediated innate immunity.

Article activity feed