TDP-43 toxic gain of function links ALS, FTD and Alzheimer's Disease through splicing dysregulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Loss of nuclear TDP-43 splicing activity is a common feature across neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but its relevance to Alzheimer's disease (AD) remains unclear. Here, we show that TDP-43 pathology in AD is broadly associated with splicing abnormalities, including aberrant splicing of amyloid precursor protein (APP). TDP-43 drives the formation of elongated APP isoforms, disrupting alternative splicing across ALS, FTLD-TDP and AD, providing a compelling mechanism for a long-standing observation of APP isoform dysregulation. We further establish a mechanistic link between TDP-43, APP splicing, and A-beta pathology. Surprisingly, the disruption to alternative APP splicing is mediated by a toxic gain of cytoplasmic TDP-43 function, rather than loss of its nuclear role. Using proximity proteomics and base editing in human iPSC-derived neurons, we show that TDP-43 pathology causes cytoplasmic co-sequestration of splicing regulators SCAF11, SRSF5, and TIAL1. Knockdown of these regulators also results in APP mis-splicing and increased A-beta burden, without affecting other TDP-43 targets such as STMN2 or UNC13A. Together, our findings suggest that TDP-43-mediated splicing dysfunction upstream of APP contributes to the pathogenesis of seemingly disparate neurodegenerative diseases, uniting AD and ALS/FTLD-TDP through a shared molecular mechanism.

Article activity feed