Predicting Early Transitions in Respiratory Virus Infections via Critical Transient Gene Interactions
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Early detection of respiratory virus infections, such as influenza A (H3N2), is critical for timely intervention and disease management. Conventional biomarkers often overlook the complex and dynamic nature of gene regulatory changes, while existing predictive models frequently lack automation and robust external validation. Thus, we present CRISGI (Critical tran-Sient Gene Interaction), a computational framework that detects early-warning signals of infection by identifying dynamic changes in gene-gene interactions—termed critical transient interactions—from bulk RNA-seq data. CRISGI leverages critical transition (CT) theory to capture a GRN’s unstable intermediate state, known as the CT stage, before irreversible phenotypic shifts. Applied to a human challenge study with H3N2, CRISGI identified 128 critical transition edges (128-TER). These were used to train predictive models capable of forecasting symptom status and onset timing. 128-TER was then validated across six temporal transcriptomic datasets involving three respiratory viruses (H3N2, H1N1, HRV). The 128-TER consistently distinguished symptomatic individuals, predicted infection onset, and revealed phenotype-specific enrichment patterns. Notably, CRISGI captured immune-related transitions involving interferon-stimulated genes (e.g., IFIT1, CXCL10), underscoring their role in early host defense. CRISGI advances early-warning biomarker discovery by integrating interaction-level dynamics and predictive modeling. Its reproducibility across viruses highlights shared immune activation pathways, supporting its utility in both research and clinical contexts.