Widespread discordance between mRNA expression, protein abundance and de novo lipogenesis activity in hepatocytes during the fed-starvation transition
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The mammalian liver plays a critical role in maintaining metabolic homeostasis during fasting and feeding. Liver function is further shaped by sex dimorphism and zonation of hepatocytes. To explore how these factors interact, we performed deep RNA-sequencing and label-free proteomics on periportal and pericentral hepatocytes isolated from male and female mice under fed and starved conditions. We developed a classification system to assess protein-mRNA relationship and found that gene products (mRNA or protein) for most zonation markers showed strong concordance between mRNA and protein. Although classical growth hormone regulated sex-biased gene products also exhibited concordance, ∼60% of sex-biased gene products showed protein-level enrichment without corresponding mRNA differences. In contrast, transition between feeding and starvation triggered widespread changes in mRNA expression without significantly affecting protein levels. In particular, key lipogenic mRNAs (e.g. Acly , Acaca , and Fasn ) were dramatically induced by feeding, but their corresponding proteins (ACLY, ACC1, and FAS) showed little to no change even as functional de novo lipogenic activity increased ∼28-fold in the fed state. To facilitate further exploration of these findings, we developed Discorda ( https://shinoda-lab.shinyapps.io/discorda/ ), a web database for interactive analysis. Our findings reinforce the principle that mRNA changes do not reliably predict corresponding protein levels (and vice versa), particularly in the context of sex and acute metabolic regulation of hepatocytes, and that de novo lipogenesis activity can be completely uncoupled from changes in protein expression.