Advection versus diffusion in brain ventricular transport

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cerebrospinal fluid (CSF) is integral to brain function. CSF provides mechanical support for the brain and helps distribute nutrients, neurotransmitters and metabolites throughout the central nervous system. CSF flow is driven by several processes, including the beating of motile cilia located on the walls of the brain ventricles. Despite the physiological importance of CSF, the underlying mechanisms of CSF flow and solute transport in the brain ventricles remain to be comprehensively resolved. This study analyzes and evaluates specifically the role of motile cilia in CSF flow and transport. We developed finite element methods for modeling flow and transport using the geometry of the zebrafish larval brain ventricles, for which we have detailed knowledge of cilia properties and CSF motion. The computational model is validated by in vivo experiments that monitor transport of a photoconvertible protein secreted in the brain ventricles. Our results show that while cilia contribute to advection of large particles, diffusion plays a significant role in the transport of small solutes. We also demonstrate how cilia location and the geometry of the ventricular system impact solute distribution. Altogether, this work presents a computational framework that can be applied to other ventricular systems, together with new concepts of how molecules are transported within the brain and its ventricles.

Article activity feed