Repressive S -adenosylmethionine biosynthesis status inhibits transcription of HeT-A retrotransposon in the germline of Drosophila

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

S-adenosylmethionine (SAM) is the major cellular methyl donor and regulates gene expression through epigenetic and other methylation-related processes. While SAM biosynthesis influences a variety of biological phenomena including ageing and disease, its cell type-specific regulation and functional implications remain poorly understood. In this study, we report that the Drosophila germline exhibits a uniquely repressive SAM biosynthesis status during gametogenesis, as indicated by low expression of SAM synthetase (Sam-S), a key enzyme for SAM production. Experimentally enhancing SAM biosynthesis in the germline led to increased expression of retrotransposons, with HeT-A, a telomere-specific element, showing the most pronounced response. We also observed increased promoter activity of HeT-A under high SAM conditions, along with accumulation of N6-methyladenine (6 mA), the major form of DNA methylation in the Drosophila genome. Although a direct causal link between 6 mA levels and transcription was not broadly observed across other retrotransposons or genes, these results raise the possibility that SAM levels modulate HeT-A expression at least in part through DNA methylation. Our findings highlight a previously underexplored metabolic feature of the Drosophila germline and suggest that SAM availability contributes to the regulation of retrotransposon activity in a lineage-specific manner.

Article activity feed