Spatial distribution of cytoskeleton-mediated feedback controls cell polarization: a computational study

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In the social amoeba Dictyostelium, cell motility is regulated through a signal transduction excitable network that interfaces with the cytoskeleton to control actin polymerization patterns. In turn, the cytoskeleton influences the signaling machinery via several feedback loops, but the nature and function of this feedback remain poorly understood. In this study, we use computational models to discern the essential role of complementary positive and negative feedback loops in polarizing cells. We contrast two potential mechanisms for the negative feedback: local inhibition and global inhibition. Our results indicate that both mechanisms can stabilize the leading edge and inhibit actin polymerization in other sites, preventing multipolarity. While some experimental perturbations align more closely with the local inhibition model, statistical analyses reveal its limited polarization potential within a wide excitability range. Conversely, global inhibition more effectively suppresses secondary and tertiary leading-edge formation, making it a more robust polarization mechanism. This raises an intriguing question: if local inhibition better replicates experimental observations but is less effective for polarization than local excitation and global inhibition, could there be a supplementary mechanism enhancing its polarization potential? To address this, we propose a novel mechanism involving the dynamic partitioning of back molecules which enhances communication between the front and back of the cell and can be leveraged by local feedback interactions between the cytoskeleton and signal transduction to improve polarization efficiency.

Article activity feed