The precision of hippocampal representations predicts incremental value-learning across the adult lifespan

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Correctly assigning value to different options and leveraging this information to guide choice is a cornerstone of adaptive decision-making. Reinforcement learning (RL) has provided a computational framework to study this process, and neural signals linked to RL have been identified in the striatum and medial prefrontal cortex. More recently, hippocampal contributions to this kind of value-learning have been proposed, at least under some conditions. Here, we test whether the hippocampus provides a signal of the option’s identity that aids in credit assignment when learning about several perceptually similar items, and evaluate how this process differs across the lifespan. A sample of 251 younger and older adults, including a subset (n = 76) with simultaneous fMRI, completed an RL task in which they learned the value of four houses through trial-and-error. Older adults showed decreased choice accuracy, accompanied by reduced neural signaling of value at choice but not feedback. Using representational similarity analysis, we found that the precision with which choice options were represented in the posterior hippocampus during choice predicted accurate decisions across age groups. Interestingly, despite previous evidence for neural de-differentiation in older adults, we found no support for a “blurring” of these stimulus representations in older adults. Rather, we observed reduced connectivity between the posterior hippocampus and the medial PFC in older adults, and this connectivity correlated with choice consistency. Taken together, these findings identify a hippocampal contribution to incremental value learning, and that reductions in incremental value learning in older adults are associated with the reduced transfer of information between the hippocampus and mPFC, rather than the precision of the information in the hippocampus itself.

Article activity feed