Examining the Thermotropic properties of Large, Circularized Nanodiscs

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Nanodiscs, soluble membrane mimetics composed of an amphipathic membrane scaffold protein encircling a lipid bilayer, are widely used in biophysical and structural studies of membrane proteins. Because many membrane proteins are responsive to their membrane environment, through specific protein-lipid interactions and bulk membrane shape and structure, it is important to understand the properties of lipid bilayers contained within nanodiscs in order to interpret studies using this technology. Nanodiscs are known to alter lipid properties, such as membrane thickness and melting temperature, and interactions with the nanodisc rim have been hypothesized to produce local perturbations in lipid structure and dynamics. Larger nanodiscs should compensate for this effect with a larger unperturbed area. To test this hypothesis, we examined the lipid bilayer properties of several lipids (DMPC, DPPC, POPC, DSPC) and soy polar extract in circularized nanodiscs of 11 nm to 50 nm diameter using the environmentally-sensitive fluorophore, Laurdan. In nanodiscs containing a single lipid type, as nanodisc size increased, lipid packing, melting temperature, and cooperativity better approximated the properties of that lipid in large unilamellar vesicles (LUVs). In spNW50 (50 nm nanodisc), the lipid packing and melting temperature were identical to LUVs. However, nanodiscs containing soy polar lipids did not follow this trend suggesting that complex lipid mixtures may produce preferential incorporation of lipids into the nanodisc or nonhomogeneous distribution of lipids within the nanodisc.

Article activity feed