Inactivation of CDK4/6, CDK2, and ERK in G1-phase triggers differentiation commitment

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Terminal cell differentiation, a process vital for tissue development and regeneration where progenitor cells acquire specialized functions and permanently exit the cell cycle, is still poorly understood at the molecular level. Using live-cell imaging and adipogenesis as a model, we demonstrate that the initial stage involves a variable number of cell divisions driven by redundant CDK4/6 or CDK2 activation.. Subsequently, a delayed decrease in cyclin D1 and an increase in p27 levels leads to the attenuation of CDK4/6 and CDK2 activity. This results in G1 lengthening and the induction of PPARG, the master regulator of adipogenesis. PPARG then induces p21, and later p18, culminating in the irreversible inactivation of CDK4/6 and CDK2, and thus, permanent cell cycle exit. However, contrary to expectation, CDK inactivation alone is not sufficient to trigger commitment to differentiation and functional specialization; ERK inactivation is also required. Our study establishes that the coordinated activation and subsequent delayed inactivation of CDK4/6, CDK2, and ERK are crucial determinants for irreversible cell cycle exit and differentiation commitment in terminal cell differentiation.

Article activity feed