Small Accelerations of the cell generate sufficient nuclear motion to modulate transcriptional activity, driving cellular response independent of matrix strain

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The cell’s mechanical environment is a fundamental determinant of its activity. Ostensibly, the cellular response is dependent on interactions between extracellular matrix deformations and the cell adhesome. Low-intensity vibration (LIV) induces sinusoidal mechanical accelerations that stimulate mesenchymal stem cell (MSC) anabolism despite generating minimal matrix strain. In this study, we tested the hypothesis that accelerations of less than 1g cause nuclear motions relative to the cell membrane in adherent cells, resulting in elevated stresses in the cytoskeleton that promote transcriptional activity. Coupling a piezoelectric vibration platform with real-time microscopy, we applied a 0.7g, 90Hz LIV signal that oscillates the cell with displacements of up to ±11 µm. Live-cell tracking revealed that the sinusoidal vibrations caused the nucleus to move ±1.27 µm (17% of total displacement) out of phase with the cell membrane. Disruption of the LINC complex, which mechanically couples the nucleoskeleton to the cytoskeleton, doubled the magnitude of this relative motion, indicating that the nucleo-cytoskeletal configuration plays a major role in regulating nuclear motion. Consistent with a previously reported increase in nuclear stiffness caused by LIV, machine-learning-based image segmentation of confocal micrographs showed that LIV increased both apical and basal F-actin fiber numbers, generating a denser, more branched actin network near the nucleus. Following six 20 min bouts of LIV applied to MSC, RNA sequencing identified 372 differentially expressed genes. Upregulated gene sets were linked to F-actin assembly and focal adhesion pathways. Finite element simulations showed that nuclear stresses increased by LIV up to 18% were associated with nuclei flattening and a 30-50% increase in actin-generated forces. These findings demonstrate that low-intensity accelerations, independent of matrix strain, can directly activate a response of the nucleus, leading to cytoskeletal reorganization and heightened nuclear stresses. Thus, even very small oscillatory mechanical signals can markedly influence cell outcomes, establishing a mechanosensing pathway independent of extracellular strains.

Article activity feed