Tubulin isotypes contribute opposing properties to balance anaphase spindle morphogenesis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Faithful chromosome segregation requires proper function of the mitotic spindle, which is built from, and depends on, the coordinated regulation of many microtubules and the activities of molecular motors and MAPs. In addition, microtubules themselves are assembled from multiple variants, or isotypes of α- and β-tubulin, yet whether they mediate the activities of motors and MAPs required for proper spindle function remains poorly understood. Here, we use budding yeast to reveal that α-tubulin isotypes regulate opposing outward- and inward-directed forces in the spindle midzone that facilitate optimal spindle elongation and length control. Moreover, we show that the isotypes mediate balanced spindle forces by differentially localizing the antagonistic force generators Cin8 (kinesin-5) and Kar3 (kinesin-14) to interpolar microtubules. Our results reveal new roles for tubulin isotypes in orchestrating motor and MAP activities and provide insights into how forces in the spindle are properly calibrated to ensure proper mitotic spindle morphogenesis.