Single-Cell Multiomic Analysis of Circadian Rhythmicity in Mouse Liver
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
From bacteria to humans, most organisms showcase inherent 24-hour circadian rhythms, best exemplified by the sleep-wake cycle. These rhythms are remarkably widespread, governing hormonal, metabolic, physiological, and behavioral oscillations, and are driven by “molecular clocks” that orchestrate the rhythmic expression of thousands of genes throughout the body. Here, we generate single-cell RNA and ATAC multiomic data to simultaneously characterize gene expression and chromatin accessibility of ∼33,000 mouse liver cells across the 24-hour day. Our study yields several key insights, including: (i) detecting circadian rhythmicity in both discretized liver cell types and transient sub-lobule cell states, capturing space-time RNA and ATAC profiles in a cell-type– and cell-state-specific manner; (ii) delving beyond mean cyclic patterns to characterize distributions, accounting for gene expression stochasticity due to transcriptional bursting; (iii) interrogating multimodal circadian rhythmicity, encompassing RNAs, DNA regulatory elements, and transcription factors (TFs), while examining priming and lagging effects across modalities; and (iv) inferring spatiotemporal gene regulatory networks involving target genes, TFs, and cis-regulatory elements that controls circadian rhythmicity and liver physiology. Our findings apply to existing single-cell data of mouse and Drosophila brains and are further validated by time-series single molecule fluorescence in situ hybridization, as well as vast amounts of existing and orthogonal high-throughput data from chromatin immunoprecipitation followed by sequencing, capture Hi-C, and TF knockout experiments. Altogether, our study constructs a comprehensive map of the time-series transcriptomic and epigenomic landscapes that elucidate the function and mechanism of the liver peripheral clocks.