RNA Editors Sculpt the Transcriptome During Terminal Erythropoiesis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Selective RNA degradation during terminal erythropoiesis results in a globin-rich transcriptome in mature erythrocytes, but the specific RNA decay pathways remain unknown. We found that deficiency of the terminal uridylyl transferase enzyme Zcchc6 and the 3’-5’ exoribonuclease Dis3l2 in mouse models led to fetal and perinatal reticulocytosis, an accumulation of RNA-rich precursors of terminal erythroid cells, suggesting their crucial roles in terminal red cell differentiation. Notably, knockout embryos exhibited persistent high-level expression of Hbb-bh1 globin, the ortholog of human fetal γ- globin. Perturbation of the Zcchc6-Dis3l2 pathway in mice engineered to express the human β-globin locus likewise increased γ -globin levels in fetal erythroid cells, suggesting that globin switching entails post-transcriptional mechanisms of mRNA destabilization in addition to transcriptional down-regulation. We cultured human hematopoietic stem and progenitor cells (HSPCs), performed CRISPR/Cas9-mediated knockout of ZCCHC6 and DIS3L2, and observed accumulation of RNA and elevated γ-globin levels in terminal erythroid cells. Our findings reveal a conserved role for the ZCCHC6/DIS3L2 RNA editors in terminal erythropoiesis and demonstrate a post-transcriptional mechanism for γ- globin gene switching, advancing research into in vitro erythrocyte generation and γ- globin stabilization to ameliorate hemoglobinopathies.

Article activity feed