Neural entrainment to pitch changes of auditory targets in noise

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neural entrainment to certain acoustic features can predict speech-in-noise perception, but these features are difficult to separate. We measured neural responses to both natural speech-in-noise and stimuli (auditory figure-ground) that simulate speech-in-noise without any acoustic or linguistic confound such as stress contour and semantics. The figure-ground stimulus is formed by multiple temporally coherent pure-tone components embedded in a random tone cloud. Previous work has shown that discrimination of dynamic figure-ground based on the fundamental frequency (F0) of natural speech predicts speech-in-noise recognition independent of hearing and age. In this study, we compared the brain substrate for the figure-ground analysis based on the F0 contour and a statistically similar ‘1/f’ contour with speech-in-noise. We used the temporal response function to predict the electroencephalography responses to the frequency trajectories of the auditory targets. We demonstrate that the brain significantly tracked the pitch changes in both AFG conditions (F0 and 1/F tracking) and a sentence-in-noise condition (F0 tracking) at similar latencies, but at similar magnitudes only when tracking the F0 contour. The pitch-tracking accuracy was consistently high across the delta and theta bands for the AFG condition but not for speech. Sensor-space analysis revealed that speech-in-noise performance correlated with the positive peak amplitude of the F0 figure-ground at 100 ms. Source-space analysis revealed bilateral temporal lobe and hippocampal generators, and strong tracking in the superior parietal lobe for auditory figures and natural speech. In conclusion, our findings demonstrate that the human brain reliably tracks the F0 trajectory of both speech and a non-linguistic figure in noise, with speech tracking showing reduced accuracy in the theta band compared to figure-ground tracking. Despite the difference in prediction accuracy, we reveal striking similarities in neural entrainment patterns and source locations between the two paradigms. These results suggest that neural entrainment engages high-level cortical mechanisms independent of linguistic content. Furthermore, we show that TRF peak amplitude serves as a potential biomarker for speech-in-noise ability, highlighting possible clinical applications.

Article activity feed