A Phase I study targeting the APE1/Ref-1 redox signaling protein with APX3330: First clinical agent targeting APE1/Ref-1 in Cancer

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Purpose

APX3330 is an oral agent targeting the redox signaling activity of Ape1/Ref-1 (Ref-1), a key regulator of transcription factors involved in inflammation and tumorigenesis. APX3330 selectively inhibits Ref-1’s redox function without affecting its DNA repair role. This Phase 1, multicenter, open-label, dose-escalation study in advanced solid tumor was aimed at determining the recommended Phase 2 dose (RP2D) while assessing safety, pharmacokinetics, and biomarker evidence of target engagement. Clinical trial: NCT03375086 .

Patients and Methods

Nineteen cancer patients were treated, with eight completing follow-up. Subjects received APX3330 orally twice daily in 21-day cycles, starting at 240 mg/day and escalating in 120 mg/day increments. Adverse event (AE) monitoring followed a 1 pt/cohort approach until a >G2 toxicity event, after which a 3+3 design was implemented. Treatment continued until disease progression, consent withdrawal, or intolerable toxicity. Antitumor activity was assessed using RECIST 1.1, and pharmacodynamic markers included serum Ref-1 levels and circulating tumor cells.

Results

Six subjects had stable disease for >4 cycles, with four remaining on study for 252– 421 days. No treatment-related serious adverse events occurred. One subject (720 mg cohort) withdrew due to Grade 3 maculopapular rash (dose-limiting toxicity). Laboratory assessments and ECGs showed no clinically significant abnormalities.

Conclusions

APX3330 demonstrated clinical benefit by stabilizing disease in ∼33% of subjects. Ref-1 target engagement was confirmed via biomarker analyses, with reduced serum Ref-1 and circulating tumor cells. The RP2D is 600 mg daily, with APX3330 showing a favorable safety profile and target-mediated effects.

Article activity feed