A miniature CRISPR-Cas10 enzyme confers immunity by an inverse signaling pathway
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Microbial and viral co-evolution has created immunity mechanisms involving oligonucleotide signaling that share mechanistic features with human anti-viral systems 1 . In these pathways, including CBASS and type III CRISPR systems in bacteria and cGAS-STING in humans, oligonucleotide synthesis occurs upon detection of virus or foreign genetic material in the cell, triggering the antiviral response 2–4 . In a surprising inversion of this process, we show here that the CRISPR-related enzyme mCpol synthesizes cyclic oligonucleotides constitutively as part of an active mechanism that maintains cell health. Cell-based experiments demonstrated that the absence or loss of mCpol-produced cyclic oligonucleotides triggers cell death, preventing spread of viruses that attempt immune evasion by depleting host cyclic nucleotides. Structural and mechanistic investigation revealed mCpol to be a di-adenylate cyclase whose product, c-di-AMP, prevents toxic oligomerization of the effector protein 2TMβ. Analysis of cells by fluorescence microscopy showed that lack of mCpol allows 2TMβ-mediated cell death due to inner membrane collapse. These findings unveil a powerful new defense strategy against virus-mediated immune suppression, expanding our understanding of oligonucleotides in cell health and disease. These results raise the possibility of similar protective roles for cyclic oligonucleotides in other organisms including humans.