Simulated metabolic profiles reveal biases in pathway analysis methods

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Introduction

Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample’s “true" metabolic disruption is unknown.

Objectives

This study aims to show that PA can lead to non-specific enrichment, potentially resulting in false assumptions about the true cause of perturbed metabolic states.

Methods

Using in silico metabolic modelling, we can create disruptions in metabolic networks. SAMBA, a constraint-based modelling approach, simulates metabolic profiles for entire pathway knockouts, providing both a known disruption site as well as a simulated metabolic profile for PA methods. PA should be able to detect the known disrupted pathway among the significantly enriched pathways for that profile.

Results

Through network-level statistics, visualisation, and graph-based metrics, we show that even when a given pathway is completely blocked, it may not be significantly enriched when using PA methods with its corresponding simulated metabolic profile. This can be due to various reasons such as the chosen PA method, the initial pathway set definition, or the network’s inherent structure.

Conclusion

This work highlights how some metabolomics data may not be suited to typical PA methods, and serves as a benchmark for analysing, improving and potentially developing new PA tools.

Article activity feed