Directed evolution expands CRISPR-Cas12a genome editing capacity

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

CRISPR-Cas12a enzymes are versatile RNA-guided genome-editing tools with applications encompassing viral diagnosis, agriculture and human therapeutics. However, their dependence on a 5’-TTTV-3’ protospacer-adjacent motif (PAM) next to DNA target sequences restricts Cas12a’s gene targeting capability to only ∼1% of a typical genome. To mitigate this constraint, we used a bacterial-based directed evolution assay combined with rational engineering to identify variants of Lachnospiraceae bacterium Cas12a (LbCas12a) with expanded PAM recognition. The resulting Cas12a variants use a range of non-canonical PAMs while retaining recognition of the canonical 5’-TTTV-3’ PAM. In particular, biochemical and cell-based assays show that the variant Flex-Cas12a utilizes 5’-NYHV-3’ PAMs that expand DNA recognition sites to ∼25% of the human genome. With enhanced targeting versatility, Flex-Cas12a unlocks access to previously inaccessible genomic loci, providing new opportunities for both therapeutic and agricultural genome engineering.

Article activity feed