Defining the host dependencies and the transcriptional landscape of RSV infection and bystander activation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Respiratory syncytial virus (RSV) is a globally prevalent pathogen, causes severe disease in older adults, and is the leading cause of bronchiolitis and pneumonia in the United States for children during their first year of life [1]. Despite its prevalence worldwide, RSV-specific treatments remain unavailable for most infected patients. Here, we leveraged a combination of genome-wide CRISPR knockout screening and single-cell RNA sequencing to improve our understanding of the host determinants of RSV infection and the host response in both infected cells, and uninfected bystanders. These data reveal temporal transcriptional patterns that are markedly different between RSV infected and bystander activated cells. Our data show that expression of interferon-stimulated genes is primarily observed in bystander activated cells, while genes implicated in the unfolded protein response and cellular stress are upregulated specifically in RSV infected cells. Furthermore, genome-wide CRISPR screens identified multiple host factors important for viral infection, findings which we contextualize relative to 29 previously published screens across 17 additional viruses. These unique data complement and extend prior studies that investigate the proinflammatory response to RSV infection, and juxtaposed to other viral infections, provide a rich resource for further hypothesis testing.
Importance
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and the elderly. Despite its substantial global health burden, RSV-targeted treatments remain unavailable for the majority of individuals. While vaccine development is underway, a detailed understanding of the host response to RSV infection and identification of required human host factors for RSV may provide insight into combatting this pathogen. Here, we utilized single-cell RNA sequencing and functional genomics to understand the host response in both RSV infected and bystander cells, identify what host factors mediate infection, and contextualize these findings relative to dozens of previously reported screens across 17 additional viruses.