Diet induced insulin resistance is due to induction of PTEN expression

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Insulin resistance is a condition associated with obesity, type 2 diabetes(T2D), hyperinsulinemia, hyperglycemia and defined by reduced sensitivity to insulin signaling. Molecular causes and early signaling events underlying insulin resistance are not well understood. Here we show that insulin activation of PI3K/AKT/mTOR signaling in insulin target tissues, causes mTORC1 induction of PTEN translation, a negative regulator of PI3K signaling. We hypothesized that insulin resistance is due to insulin dependent induction of PTEN that prevents further increases in PI3K signaling. In a diet induced animal model of obesity and insulin resistance, we show that PTEN levels are increased in fat, muscle, and liver. Hyperinsulinemia and PTEN induction are followed by hyperglycemia, severe glucose intolerance, and hepatic steatosis. In response to chronic hyperinsulinemia, PTEN remains increased, while AKT activity is induced transiently before settling down to a PTEN-high and AKT-low state in the tissues, predicted by computational modeling of the PTEN-AKT feedback loop. Treatment with PTEN and mTORC1 inhibitors prevent and reverse the effect of PTEN induction, rescue insulin resistance and increase PI3K/AKT signaling. Thus, we show that PTEN induction by increased insulin levels elevates feedback inhibition of the pathway causing insulin resistance, its associated phenotypes, and is a potential therapeutic target.

Article activity feed