High-Throughput Screening on Primary Tumor-Associated Microglia and Macrophages Identifies HDAC Inhibitors as Enhancers of Phagocytosis and Potent Partners for Immunotherapy in Glioblastoma
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor with limited treatment options. Tumor-associated macrophages and microglia (TAMs) drive immune suppression and tumor progression, making them a key therapeutic target for GBM. Enhancing TAM phagocytosis in GBM has shown promise, particularly with innate checkpoint inhibitors, such as CD47-blocking antibodies. However, small molecule approaches, which offer tunable and potentially synergistic mechanisms, remain underexplored in this context. In this study, we conducted the first large-scale chemical screen on primary TAMs from patients with GBM, identifying histone deacetylase (HDAC) inhibitors as potent inducers of phagocytosis. These compounds demonstrated phagocytosis-inducing effects across multiple GBM patient samples, with further amplification when combined with CD47 blockade. In a xenograft GBM model, HDAC inhibitors enhanced phagocytosis and suppressed tumor growth, with even greater efficacy in combination with CD47 antibodies. Our findings highlight HDAC inhibitors as promising agents to reprogram TAMs and synergize with immune checkpoint therapies, offering a novel strategy to bolster anti-tumor immunity in GBM.