A Genetics-guided Integrative Framework for Drug Repurposing: Identifying Anti-hypertensive Drug Telmisartan for Type 2 Diabetes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drug development is a long and costly process, and repurposing existing drugs for use toward a different disease or condition may serve as a cost-effective alternative. As drug targets with genetic support have a doubled success rate, genetics-informed drug repurposing holds promise in translating genetic findings into therapeutics. In this study, we developed a Genetics Informed Network-based Drug Repurposing via in silico Perturbation (GIN-DRIP) framework and applied the framework to repurpose drugs for type-2 diabetes (T2D). In GIN-DRIP for T2D, it integrates multi-level omics data to translate T2D GWAS signals into a genetics-informed network that simultaneously encodes gene importance scores and a directional effect (up/down) of risk genes for T2D; it then bases on the GIN to perform signature matching with drug perturbation experiments to identify drugs that can counteract the effect of T2D risk alleles. With this approach, we identified 3 high-confidence FDA-approved candidate drugs for T2D, and validated telmisartan, an anti-hypertensive drug, in our EHR data with over 3 million patients. We found that telmisartan users were associated with a reduced incidence of T2D compared to users of other anti-hypertensive drugs and non-users, supporting the therapeutic potential of telmisartan for T2D. Our framework can be applied to other diseases for translating GWAS findings to aid drug repurposing for complex diseases.

Article activity feed