Hair cell population integrity necessary to preserve vestibular function
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Vestibular dysfunction constitutes a major medical concern, and regeneration of hair cells (HC) is a primary target of gene therapy aimed at restoring vestibular functions. Thus far, therapeutic trials in animal models targeting vestibular loss associated with genetic diseases have yielded variable and partial results, and the functional identity and quantity of HCs required to restore minimal or normal vestibular function remain undefined. Indeed, direct comparisons between structural pathology and quantitative assessments of vestibular dysfunctions are lacking in humans and are rather limited in animal models, representing a significant gap in current knowledge. Here, we present an innovative methodology to bridge the gap between HC integrity and functional vestibular loss in individuals. Gradual vestibular deficits were induced through a dose-dependent ototoxic lesion, quantified with canal or utricular-specific vestibulo-ocular reflex tests, and were then correlated in all individuals with the loss of type I and type II HCs in different regions of ampulla and macula. Our findings reveal that the structure-function relationship is nonlinear, with lower bound of approximately 50% of HCs necessary to retain minimal vestibular function, and threshold exceeding 80% to preserve normal function, thus shedding light on population coding mechanisms for vestibular response. Our data further support the decisive role of type I, rather than type II, HC in the tested VOR functions.