Image-based Mandibular and Maxillary Parcellation and Annotation using Computer Tomography (IMPACT): A Deep Learning-based Clinical Tool for Orodental Dose Estimation and Osteoradionecrosis Assessment

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Accurate delineation of orodental structures on radiotherapy CT images is essential for dosimetric assessments and dental decisions. We propose a deep-learning auto-segmentation framework for individual teeth and mandible/maxilla sub-volumes aligned with the ClinRad ORN staging system.

Methods

Mandible and maxilla sub-volumes were manually defined, differentiating between alveolar and basal regions, and teeth were labelled individually. For each task, a DL segmentation model was independently trained. A Swin UNETR-based model was used for the mandible sub-volumes. For the smaller structures (e.g., teeth and maxilla sub-volumes) a two-stage segmentation model first used the ResUNet to segment the entire teeth and maxilla regions as a single ROI that was then used to crop the image input of the Swin UNETR. In addition to segmentation accuracy and geometric precision, a dosimetric comparison was made between manual and model-predicted segmentations.

Results

Segmentation performance varied across sub-volumes – mean Dice values of 0.85 (mandible basal), 0.82 (mandible alveolar), 0.78 (maxilla alveolar), 0.80 (upper central teeth), 0.69 (upper premolars), 0.76 (upper molars), 0.76 (lower central teeth), 0.70 (lower premolars), 0.71 (lower molars) – and exhibited limited applicability in segmenting teeth and sub-volumes often absent in the data. Only the maxilla alveolar central sub-volume showed a statistically significant dosimetric difference (Bonferroni-adjusted p-value = 0.02).

Conclusion

We present a novel DL-based auto-segmentation framework of orodental structures, enabling spatial localization of dose-related differences in the jaw. This tool enhances image-based bone injury detection, including ORN, and improves clinical decision-making in radiation oncology and dental care for head and neck cancer patients.

Article activity feed