LSD1 inhibition corrects dysregulated MHC-I and dendritic cells activation through IFNγ-CXCL9-CXCR3 axis to promote antitumor immunity in HNSCC

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Poor infiltration of CD8+ T cells and dysregulated MHC-I confer resistance to anticancer clinical therapies. This study aimed to elucidate the mechanisms of lysine-specific demethylase 1 (LSD1, encoded by KDM1A gene) in antitumor immunity in Head and Neck Squamous cell carcinoma (HNSCC). LSD1 inhibition in syngeneic and chronic tobacco carcinogen-induced HNSCC mice recruited activated dendritic cells (DCs), CD4+ and CD8+ T cells, enriched interferon-gamma (IFNγ) in T cells, CXCL9 in DCs, and CXCR3 in T cells, as evaluated using flow cytometry and single-cell RNA-seq analysis. Humanized HNSCC mice and TCGA data validated the inverse correlation of KDM1A with DC markers, CD8+ T cells, and their activating chemokines. Kdm1a knockout in mouse HNSCC and LSD1 inhibitor treatment to co-culture of human HNSCC cells with human peripheral blood mononuclear cells (PBMCs) resulted in MHC-I upregulation in cancer cells for efficient antigen presentation in tumors. Overall, LSD1 inhibition in tumor cells upregulates MHC class I and induces DCs to produce CXCL9, which in turn activates CD8+ T cells through the CXCL9-CXCR3 axis to produce IFNγ. Finally, we identified a novel mechanism by which LSD1 inhibition promotes the activation of H3K4me2 and its direct interaction with MHC-I to induce antitumor immunity. This may have implications in poorly immunogenic and immunotherapy-resistant cancers.

Statement of Significance

LSD1-mediated unique mechanisms have impact on epigenetic therapy, MHC-I resistant HNSCC therapies, and poor CD8+ and dendritic cell infilterated tumors.

Article activity feed