STIM1 and Endoplasmic Reticulum-Plasma Membrane Contact Sites Oscillate Independently of Calcium-Induced Calcium Release

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Calcium (Ca²⁺) release from intracellular stores, Ca²⁺ entry across the plasma membrane, and their coordination via store-operated Ca²⁺ entry (SOCE) are critical for receptor-activated Ca²⁺ oscillations. However, the precise mechanism of Ca²⁺ oscillations and whether their control loop resides at the plasma membrane or intracellularly remain unresolved. By examining the dynamics of stromal interaction molecule 1 (STIM1)—an endoplasmic reticulum (ER)-localized Ca²⁺ sensor that activates the Orai1 channel on the plasma membrane for SOCE—and in mast cells, we found that a significant proportion of cells exhibited STIM1 oscillations with the same periodicity as Ca²⁺ oscillations. These cortical oscillations, occurring in the cell’s cortical region and shared with ER-plasma membrane (ER-PM) contact sites proteins, were only detectable using total internal reflection fluorescence microscopy (TIRFM). Notably, STIM1 oscillations could occur independently of Ca²⁺ oscillations. Simultaneous imaging of cytoplasmic Ca²⁺ and ER Ca²⁺ with SEPIA-ER revealed that receptor activation does not deplete ER Ca²⁺, whereas receptor activation without extracellular Ca²⁺ influx induces cyclic ER Ca²⁺ depletion. However, under such nonphysiological conditions, cyclic ER Ca²⁺ oscillations lead to sustained STIM1 recruitment, indicating that oscillatory Ca²⁺ release is neither necessary nor sufficient for STIM1 oscillations. Using optogenetic tools to manipulate ER-PM contact site dynamics, we found that persistent ER-PM contact sites reduced the amplitude of Ca²⁺ oscillations without alteration of oscillation frequency. Together, these findings suggest an active cortical mechanism governs the rapid dissociation of ER-PM contact sites, thereby control amplitude of oscillatory Ca²⁺ dynamics during receptor-induced Ca²⁺ oscillations.

Article activity feed