Reconstructing signaling histories of single cells via perturbation screens and transfer learning

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Manipulating the signaling environment is an effective approach to alter cellular states for broad-ranging applications, from engineering tissues to treating diseases. Such manipulation requires knowing the signaling states and histories of the cells in situ , for which high-throughput discovery methods are lacking. Here, we present an integrated experimental-computational framework that learns signaling response signatures from a high-throughput in vitro perturbation atlas and infers combinatorial signaling activities in in vivo cell types with high accuracy and temporal resolution. Specifically, we generated signaling perturbation atlas across diverse cell types/states through multiplexed sequential combinatorial screens on human pluripotent stem cells. Using the atlas to train IRIS, a neural network-based model, and predicting on mouse embryo scRNAseq atlas, we discovered global features of combinatorial signaling code usage over time, identified biologically meaningful heterogeneity of signaling states within each cell type, and reconstructed signaling histories along diverse cell lineages. We further demonstrated that IRIS greatly accelerates the optimization of stem cell differentiation protocols by drastically reducing the combinatorial space that needs to be tested. This framework leads to the revelation that different cell types share robust signal response signatures, and provides a scalable solution for mapping complex signaling interactions in vivo to guide targeted interventions.

Article activity feed