A SHERLOCK toolbox for the eco-epidemiological surveillance of animal African trypanosomosis reveals a similar parasite diversity in domestic pigs in two ancient sleeping sickness foci in Western Africa
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Animal African trypanosomosis (AAT), caused by protist parasites of the genus Trypanosoma, puts upward of a million head of livestock at risk across 37 countries in Africa. The economic impact of AAT and the presence of human-infectious trypanosomes in animals place a clear importance on improving diagnostics for animal trypanosomes to map the distribution of the veterinary parasites and identify reservoirs of human-infectious trypanosomes. We have adapted the CRISPR-based detection toolkit SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for trypanosomatid parasites responsible for AAT (SHERLOCK4AAT) including Pan-trypanosomatid, Trypanozoon , T. vivax , T. congolense , T. theileri , T. simiae and T. suis assays. To test the applicability of this technique in the field, we analysed dried blood spots collected from 200 farm and 224 free-ranging pigs in endemic and historical human African trypanosomiasis foci in Guinea and Côte d’Ivoire, respectively. The results revealed that SHERLOCK4AAT can detect and discriminate between trypanosome species involved in multiple infections with a high sensitivity. 62.7 % [58.1, 67.3] of pigs were found infected with at least one trypanosome species. T. brucei gambiense , a human-infectious trypanosome, was found in one animal at both sites, highlighting the risk that these animals may act as persistent reservoirs. These data suggest that, due to their proximity to humans and their attractiveness to tsetse flies, pigs could act as sentinels to monitor T. b. gambiense circulation using the SHERLOCK4AAT toolbox.