Spatial patterning of fibroblast TGFβ signaling underlies treatment resistance in rheumatoid arthritis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Treatment-refractory rheumatoid arthritis (RA) is a major unmet need, and the mechanisms driving treatment resistance are poorly understood. To identify molecular determinants of RA non-remission, we performed spatial transcriptomic profiling on pre- and post-treatment synovial tissue biopsies from treatment naïve patients who received conventional DMARDs or adalimumab for 6 months. In the baseline biopsies of non-remission patients, we identified significant expansion of fibrogenic fibroblasts marked by high expression of COMP , a fibrosis-associated extracellular matrix protein. COMP hi fibroblasts localized to perivascular niches that, unexpectedly, served as transcriptional hubs for TGFβ activity. We identified endothelial-derived Notch signaling as an upstream regulator of fibroblast TGFβ signaling via its dual role in driving TGFβ isoform expression and suppressing TGFβ receptors, generating a proximal-distal gradient of TGFβ activity. Further, disruption of steady-state Notch signaling in vitro enabled fibrogenic fibroblast activation. Analysis of post-treatment biopsies revealed marked expansion of COMP hi fibroblasts in non-remission RA patients, despite evidence of successful immune cell depletion, suggesting a spatiotemporal process of fibrogenic remodeling linked to treatment resistance. Collectively, our data implicates targeting of TGFβ signaling to prevent exuberant synovial tissue fibrosis as a potential therapeutic strategy for refractory RA.

Article activity feed