Detecting short-interval longitudinal cortical atrophy in neurodegenerative dementias via cluster scanning: A proof of concept
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Regional brain atrophy estimated from structural magnetic resonance imaging (MRI) is a widely used measure of neurodegeneration in Alzheimer’s disease (AD), Frontotemporal Lobar Degeneration (FTLD), and other dementias. Yet, traditional MRI-derived morphometric estimates are susceptible to measurement errors, posing a challenge for reliably detecting longitudinal atrophy, particularly over short intervals. Here, we examined the utility of multiple MRI scans acquired in rapid succession (i.e., cluster scanning ) for detecting longitudinal cortical atrophy over 3- and 6-month intervals within individual patients. Four individuals with mild cognitive impairment or mild dementia likely due to AD or FTLD participated in this study. At baseline, 3 months, and 6 months, structural MRI data were collected on a 3 Tesla scanner using a fast 1.2-mm T1-weighted multi-echo magnetization-prepared rapid gradient echo (MEMPRAGE) sequence (acquisition time = 2’23’’). At each timepoint, participants underwent up to 32 MEMPRAGE scans acquired in four separate sessions over two days. Using linear mixed-effects models, phenotypically vulnerable cortical (“core atrophy”) regions exhibited statistically significant longitudinal atrophy in all participants (i.e., decreased cortical thickness) by 3 months and further demonstrated preferential vulnerability compared to control regions in three of the participants over at least one of the 3-month intervals. These findings provide proof-of-concept evidence that pooling multiple morphometric estimates derived from cluster scanning can detect longitudinal cortical atrophy over short intervals in individual patients with neurodegenerative dementias.