Response to anti-angiogenic therapy is affected by AIMP protein family activity in glioblastoma and lower-grade gliomas

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Glioblastoma (GBM) is a highly vascularized, heterogeneous tumor, yet anti-angiogenic therapies have yielded limited survival benefits. The lack of validated predictive biomarkers for treatment response stratification remains a major challenge. Aminoacyl tRNA synthetase complex-interacting multicomplex proteins (AIMPs) 1/2/3 have been implicated in CNS diseases, but their roles in gliomas remain unexplored. We investigated their association with angiogenesis and their significance as predictive biomarkers for anti-angiogenic treatment response.

Methods

In this multi-cohort retrospective study we analyzed glioma samples from TCGA, CGGA, Rembrandt, Gravendeel, BELOB and REGOMA trials, and four single-cell transcriptomic datasets. Multi-omic analyses incorporated transcriptomic, epigenetic, and proteomic data. Kaplan-Meier and Cox proportional hazards models were used to assess the prognostic value of AIMPs in heterogeneous and homogeneous treatment-groups. Using single-cell transcriptomics, we explored spatial and cell-type-specific AIMP2 expression in GBM.

Results

AIMP1/2/3 expressions correlated significantly with angiogenesis across TCGA cancers. In gliomas, AIMPs were upregulated in tumor vs. normal tissues, higher- vs. lower-grade gliomas, and recurrent vs. primary tumors (p<0.05). Upon retrospective analysis of two clinical trials assessing different anti-angiogenic drugs, we found that high-AIMP2 subgroups had improved response to therapies in GBM (REGOMA: HR 4.75 [1.96–11.5], p<0.001; BELOB: HR 2.3 [1.17–4.49], p=0.015). AIMP2-cg04317940 methylation emerged as a clinically applicable stratification marker. Single-cell analysis revealed homogeneous AIMP2 expression in tumor tissues, particularly in AC-like cells, suggesting a mechanistic link to tumor angiogenesis.

Conclusions

These findings provide novel insights into the role of AIMPs in angiogenesis, offering improved patient stratification and therapeutic outcomes in recurrent GBM.

Article activity feed