Natural variability increases human walking metabolic costs and its implications to simulation-based metabolic estimation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human walking contains variability due to small intrinsic perturbations arising from sensory or motor noise, or to promote motor learning. We hypothesize that such stride-to-stride variability may increase the metabolic cost of walking over and above a perfectly periodic motion, and that neglecting such variability in simulations may mis-estimate the metabolic cost. Here, we quantify the metabolic estimation errors accrued by neglecting the stride-to-stride variability using human data and a musculoskeletal model by comparing the cost of multiple strides of walking and the cost of a perfectly periodic stride with averaged kinematics and kinetics. We find that using an averaged stride underestimates the cost by about 2.5%, whereas using a random stride may mis-estimate the cost positively or negatively by up to 15%. As a further illustration of the cost increase in a simpler dynamical context, we use a feedback-controlled inverted pendulum walking model to show that increasing the sensory or motor noise increases the overall metabolic cost, as well as the variability of stride-to-stride metabolic costs, as seen with the musculoskeletal simulations. Our work establishes the importance of accounting for stride-to-stride variability when estimating metabolic costs from motion.

Article activity feed