Cleaved vs. Uncleaved: How Furin Cleavage Reshapes the Conformational Landscape of SARS-CoV-2 Spike
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The SARS-CoV-2 Spike protein is the primary target for vaccine design, with immunogens typically engineered to enhance stability by introducing proline mutations (2P) and mutating or deleting the Furin Cleavage Site (FCS). While these modifications improve structural integrity, studies suggest that furin cleavage can play a functional role in Spike protein dynamics, potentially enhancing ACE2 receptor binding. However, the impact of this cleavage on the unbound form of the Spike protein remains unclear. In this study, we use extensive all-atom molecular dynamics (MD) simulations to compare the structural and dynamic properties of cleaved and uncleaved Spike proteins in their pre-fusion, unbound state. Our results show that Furin cleavage significantly alters allosteric communication within the protein, increasing correlated motions between the Receptor Binding Domain (RBD) and N-terminal Domain (NTD), which may facilitate receptor engagement. Principal Component Analysis (PCA) reveals that the cleaved and uncleaved Spike proteins sample distinct conformational landscapes, with the cleaved form displaying enhanced flexibility and a broader range of RBD tilt angles. Additionally, Furin cleavage primes the S2 subunit by expanding the central helix, potentially influencing the transition to the post-fusion state. Glycan clustering patterns further suggest an adaptive structural response to cleavage, particularly in the NTD and RBD regions. These findings highlight the potential functional consequences of FCS deletion in immunogen design and underscore the importance of considering the native cleavage state in vaccine and therapeutic development.