Integrated spatial morpho-transcriptomics predicts functional traits in pancreatic cancer

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Analyses of patient-derived cell lines have greatly enhanced discovery of molecular biomarkers and therapeutic targets. However, characterization of cellular morphological properties is limited. We studied cell morphologies of human pancreatic adenocarcinoma (PDAC) cell lines and their associations with drug sensitivity, gene expression, and functional properties. By integrating live cell and spatial mRNA imaging, we identified KRAS inhibitor–induced morphological changes specific for drug-resistant cells that correlated with gene expression changes. We then categorized a large panel of patient-derived PDAC cell lines into morphological (e.g., polygonal, irregular, spheroid) and organizational (e.g., tightly aggregated, multilayered, dispersed) subtypes and found differences in gene expression, therapeutic targeting potential, and metastatic proclivity. In human PDAC tissues, we identified prognostic expression signatures associated with distinct cancer cell organization patterns. In summary, we highlight the potential of cell morphological information in rapid, cost-effective assays to aid precision oncology efforts leveraging patient-derived in vitro models and tissues.

Article activity feed