An effective response to respiratory inhibition by a Pseudomonas aeruginosa excreted quinoline promotes Staphylococcus aureus fitness and survival in co-culture

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pseudomonas aeruginosa and Staphylococcus aureus are primary bacterial pathogens isolated from the airways of cystic fibrosis patients. P. aeruginosa produces secondary metabolites that negatively impact the fitness of S. aureus, allowing P. aeruginosa to become the most prominent bacterium when the species are co-cultured. Some of these metabolites inhibit S. aureus respiration. SrrAB is a staphylococcal two-component regulatory system (TCRS) that responds to alterations in respiratory status and helps S. aureus transition between fermentative and respiratory metabolisms. We used P. aeruginosa mutant strains and chemical genetics to demonstrate that P. aeruginosa secondary metabolites, HQNO in particular, inhibit S. aureus respiration, resulting in modified SrrAB stimulation. Metabolomic analyses found that the ratio of NAD + to NADH increased upon prolonged culture with HQNO. Consistent with this, the activity of the Rex transcriptional regulator, which senses and responds to alterations in the NAD + / NADH ratio, had altered activity upon HQNO treatment. The presence of SrrAB increased fitness when cultured with HQNO and increased survival when challenged with P. aeruginosa. S. aureus strains with a decreased ability to maintain redox homeostasis via fermentation had decreased fitness when challenged with HQNO and decreased survival when challenged with P. aeruginosa . These findings led to a model wherein P. aeruginosa secreted HQNO inhibits S. aureus respiration, stimulating SrrAB, which promotes fitness and survival by increasing carbon flux through fermentative pathways to maintain redox homeostasis.

Importance

Cystic fibrosis (CF) is a hereditary respiratory disease that predisposes patients to bacterial infections, primarily caused by Staphylococcus aureus and Pseudomonas aeruginosa . P. aeruginosa excreted secondary metabolites decrease S. aureus fitness during co-infection, ultimately eliminating it. The genetic mechanisms that S. aureus uses to detect and respond to these metabolites are unknown. The S. aureus SrrAB two-component regulatory system senses flux through respiratory pathways and increases transcription of genes utilized for adaption to low-respiration environments. This study demonstrates that SrrAB responds to the P. aeruginosa -produced respiratory toxin HQNO and responds by increasing fermentation increasing competition. This study describes interactions between these two bacterial pathogens, which could be exploited to decrease pathogen burden in individuals living with cystic fibrosis.

Article activity feed