seqLens: optimizing language models for genomic predictions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Understanding genomic sequences through the lens of language modeling has the potential to revolutionize biological research, yet challenges in tokenization, model architecture, and adaptation to diverse genomic contexts remain. In this study, we investigated key innovations in DNA sequence modeling, treating DNA as a language and applying language models to genomic data. We gathered two diverse pretraining datasets: one consisting of 19,551 reference genomes, including over 18,000 prokaryotic genomes (115B nucleotides), and another more balanced dataset with 1,354 genomes, including 1,166 prokaryotic and 188 eukaryotic reference genomes (180B nucleotides). We trained five byte-pair encoding tokenizers and pretrained 52 DNA language models, systematically comparing different architectures, hyperparameters, and classification heads. We introduce seqLens , a family of models based on disentangled attention with relative positional encoding, which outperforms state-of-the-art models in 13 of 19 benchmarking phenotypic predictions. We further explore continual pretraining, domain adaptation, and parameter-efficient fine-tuning methods to assess trade-offs between computational efficiency and accuracy. Our findings demonstrate that relevant pretraining data significantly boosts performance, alternative pooling techniques enhance classification, and larger tokenizers negatively impact generalization. These insights provide a foundation for optimizing DNA language models and improving genome annotations.

Article activity feed