DiMeLo-cito: a one-tube protocol for mapping protein-DNA interactions reveals CTCF bookmarking in mitosis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Genome regulation relies on complex and dynamic interactions between DNA and proteins. Recently, powerful methods have emerged that leverage third-generation sequencing to map protein-DNA interactions genome-wide. For example, Directed Methylation with Long-read sequencing (DiMeLo-seq) enables mapping of protein-DNA interactions along long, single chromatin fibers, including in highly repetitive genomic regions. However, DiMeLo-seq involves lossy centrifugation-based wash steps that limit its applicability to many sample types. To address this, we developed DiMeLo-cito, a single-tube, wash-free protocol that maximizes the yield and quality of genomic DNA obtained for long-read sequencing. This protocol enables the interrogation of genome-wide protein binding with as few as 100,000 cells and without the requirement of a nuclear envelope, enabling confident measurement of protein-DNA interactions during mitosis. Using this protocol, we detected strong binding of CTCF to mitotic chromosomes in diploid human cells, in contrast with earlier studies in karyotypically unstable cancer cell lines, suggesting that CTCF “bookmarks” specific sites critical for maintaining genome architecture across cell divisions. By expanding the capabilities of DiMeLo-seq to a broader range of sample types, DiMeLo-cito can provide new insights into genome regulation and organization.

Article activity feed