Sparse innervation and local heterogeneity in the vibrissal corticostriatal projection
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The density and overlap of cortical axons in the dorsolateral striatum (DLS) have suggested that striatal neurons integrate widespread information from cortical regions that are functionally related. However, in vivo, DLS neuronal responses to sensory stimuli have shown unexpectedly high selectivity, raising questions about the actual degree of input convergence of functional corticostriatal projection on individual striatal cells. Here, we investigated this question by focusing on the projections from different whisker cortical columns, as they overlap in the striatum and are co-active during behavior. Using ex vivo patch-clamp recordings in the DLS and glutamate uncaging for focal stimulations in the barrel cortex, we were able to map the location of presynaptic neurons to individual striatal projection neurons (SPNs). We found that each SPN was innervated by cells located in a small number of whisker cortical columns scattered across the barrel field in the slice. Connectivity of single SPNs with cortical neurons was thus highly discontinuous horizontally, despite the presence of more potential connections. Moreover, connectivity patterns were specific to each cell, with neighboring SPNs sharing few common clusters of presynaptic cells in the cortex. Despite this sparse and distinct innervation of individual SPNs, the projection was topographically organized at the population level. Finally, we found similar innervation patterns for D1 and D2-type SPNs, but observed distinct differences in synaptic strength at connections with specific cortical layers, notably with the associative layer 2/3. Our results suggest that the high convergence of somatosensory inputs to the striatum, enabled by diffuse and overlapping cortical innervation, is accomplished through sparse yet complementary connectivity to individual SPNs.