A pennycress transparent testa 8 knockout mutant has drastic changes in seed coat anatomy and chemical compositions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pennycress is a winter annual intermediate crop with approximately 30% seed oil content suitable for producing biofuels. Here, we evaluated seed development, anatomy, and agronomically relevant traits of a transparent testa 8 knockout mutant ( tt8-2bp ) generated by CRISPR genome editing to improve seed quality. We performed histochemical analyses on wild-type and tt8-2bp seeds at different developmental stages. No visible anatomical defects were observed in embryos and endosperm of tt8-2bp seeds. However, tt8-2bp seed coats completely lost proanthocyanidins which were accumulated in an inner integument cell layer and in the thickened cell wall of an outer integument cell layer of wild-type seed coats. Based on spatial metabolomic and solid-state NMR analyses, tt8-2bp seed coats had decreased aromatic compounds and cell wall polysaccharides compared to wild-type seed coats. Additionally, tt8-2bp seeds had reduced seed coat dry weights and increased embryo dry weights compared to wild-type seeds, indicating changes in macronutrient partitioning during seed development. Mature tt8-2bp seeds exhibited increased imbibition rates and seed coat permeability to water-soluble molecules, suggesting a higher seed coat hydrophilicity than wild-type seeds. In conclusion, we did not find defects in tt8-2bp mutant seeds that were unfavorable agronomically, supporting that TT8 is an attractive target for pennycress domestication.

Highlight

Histochemical analyses of pennycress seeds revealed a complete loss of proanthocyanidins in tt8-2bp seed coats accompanied by increased seed imbibition rates and seed coat permeability compared to wild-type seeds.

Article activity feed