SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revolutionized our understanding of the brain activity landscape, bridging circuit neuroscience in animal models with noninvasive brain mapping in humans. This immensely utilized technique, however, faces challenges such as acoustic noise, electromagnetic interference, motion artifacts, magnetic-field inhomogeneity, and limitations in sensitivity and specificity. Here, we introduce Steady-state On-the-Ramp Detection of INduction-decay with Oversampling (SORDINO), a transformative fMRI technique that addresses these challenges by maintaining a constant total gradient amplitude while acquiring data during continuously changing gradient direction. When benchmarked against conventional fMRI on a 9.4T system, SORDINO is silent, sensitive, specific, and resistant to motion and susceptibility artifacts. SORDINO offers superior compatibility with multimodal experiments and carries novel contrast mechanisms distinct from BOLD. It also enables brain-wide activity and connectivity mapping in awake, behaving mice, overcoming stress- and motion-related confounds that are among the most challenging barriers in current animal fMRI studies.