Longitudinal changes in functional connectivity networks in the first year following stroke
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The functional organization of the brain consists of multiple subsystems, or modules, with dense functional communication within modules (i.e., visual, attention) and relatively sparse but vital communications between them. The two hemispheres also have strong functional communications, which presumably supports hemispheric lateralization and specialization. Subsequent to stroke, the functional organization undergoes neuroplastic changes over time. However, empirical longitudinal studies of human subjects are lacking. Here we analyzed three large-scale, whole-brain resting-state functional MRI connectivity measures: modularity , hemispheric symmetry (based on system segregation ), and homotopic connectivity in a group of 17 participants at 1-month, 3-months, and 12-months after a single left-hemisphere stroke. These measures were also compared to a group of 13 age-matched healthy controls. The three measures exhibited different trajectories of change: (1) modularity steadily decreased across the 12-month period and became statistically inferior to control values at 12 months, indicating a less modular organization; (2) hemispheric symmetry values were abnormally low at 1-month and then increased significantly in the first 6 months, leveling off at levels not significantly below control levels by 12 months, suggesting that the two hemispheres diverged initially after the unilateral damage, but improved over time; and (3) homotopic connectivity exhibited a U-shaped function with a significant decrease from 1-6 months and then an increase from 6-12 months, to levels that were not significantly different from controls. The results revealed a complex picture of the dynamic changes the brain undergoes as it responds to abrupt onset damage.