Multi-millennial genetic resilience of Baltic diatom populations disturbed in the past centuries

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Little is known about the genetic diversity and stability of natural populations over millennial time scales, although the current biodiversity crisis calls for heightened understanding. Marine phytoplankton, the primary producers forming the basis of food webs in the oceans, play a pivotal role in maintaining marine ecosystems health and serve as indicators of environmental change. This study examines the genetic diversity and shifts in allelic composition in the diatom species Skeletonema marinoi over ~ 8000 years in the Baltic Sea by analyzing chloroplast and mitochondrial genomes. Ancient environmental DNA (aeDNA) from sediment cores demonstrates stability and resilience of genetic composition and diversity of this species across millennia in the context of major climate events. Accelerated change in allelic composition is observed from historical periods onwards, coinciding with times of intensifying human activity, like the Roman Empire, the Viking Age, and the Hanseatic Age, suggesting that anthropogenic stressors have profoundly impacted this species for the last two millennia. The data indicate a very high natural stability and resilience of the genomic composition of the species and underscore the importance of uncovering genomic disruptions caused by human impact on organisms, even those not directly exploited, to better predict and manage future biodiversity.

Article activity feed