Nucleosome Engagement Regulates RORγt Structure and Dynamics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The retinoic acid-related orphan receptor gamma (RORγt) acts as the major transcriptional activator in Th17 cell development and function to mediate adaptive immune defenses against pathogenic infection. RORγt engages accessible DNA response elements in the genome and interplays with coactivator proteins and accessory transcription factors to drive gene expression. However, how the chromatin environment mediates RORγt structure, dynamics, and function remains unclear. Here, we profile how the nucleosome promotes or restricts access to the main RORγt DNA response elements found in native enhancers and promoters, revealing preferential binding in regions of free DNA and nucleosomal entry/exit sites, with single base-pair resolution. Solution phase measurements using hydrogen deuterium exchange coupled to mass spectrometry identify novel allosteric effects that influence RORγt binding and mediate chromatin dynamics. A high-resolution structure of RORγt bound to the nucleosome reveals how structured elements assemble to confer binding specificity and avidity to chromatin substrates. The observations suggest an activation model where RORγt binding to chromatinized DNA promotes coregulator recruitment and chromatin decompaction.

Article activity feed