Atovaquone/Proguanil Use and Zoster Vaccination Are Associated with Reduced Alzheimer’s Disease Risk in Two Cohorts: Implications for a Latent Toxoplasma gondii Mechanism

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This useful study raises interesting questions but provides inadequate evidence of an association between atovaquone-proguanil use (as well as toxoplasmosis seropositivity) and reduced Alzheimer's dementia risk. The findings are intriguing but they are correlative and hypothesis-generating with the strong possibility of residual confounding.

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Identifying modifiable risk factors for Alzheimer’s disease (AD) may shed light on novel mechanisms and inform prevention strategies. Increasing evidence suggests that latent pathogens may contribute to AD pathogenesis via chronic neuroinflammation.

METHODS

We conducted a large-scale, dual-cohort study to identify exposures associated with reduced Alzheimer’s disease (AD) risk. In a national Israeli cohort (Leumit Health Services; 2004-2024), we analyzed 9,124 AD patients and 18,248 matched controls. We systematically screened medication exposures in the matched cohort for associations with significantly reduced AD risk (OR < 0.5, FDR < 0.05). To account for potential residual confounding, we applied conditional logistic regression models adjusted for age, sex, socioeconomic status, and relevant comorbidities.

Findings were independently validated in the U.S.-based TriNetX network, which includes electronic health records from over 120 million patients across 69 healthcare organizations. Propensity score-matched Cox proportional hazards models were used to estimate hazard ratios (HRs) for dementia incidence across stratified age groups.

RESULTS

Atovaquone/proguanil (Ato/Pro), an antiprotozoal agent active against Toxoplasma gondii , was strongly associated with reduced AD risk in both cohorts (LHS: OR 0.36 [95% CI, 0.20-0.61]; TriNetX: HRs 0.34-0.51, p = 10 -17 to 10 -40 across age groups 50-59, 60-69, and 70-79). Both recombinant and live attenuated varicella-zoster virus (VZV) vaccines were also significantly protective (ORs 0.16-0.37), and T. gondii seropositivity was associated with a 2.43-fold increased risk of dementia ( p = 0.0013). Notably, Ato/Pro’s protective effect was more pronounced in individuals without prior VZV vaccination (HR 0.51 [0.43-0.59]) compared to vaccinated individuals (HR 0.71 [0.59-0.85]).

DISCUSSION

This dual-cohort study - spanning over 120 million patients across two nations - demonstrates strong and reproducible associations linking Ato/Pro use and VZV vaccination to reduced AD risk. The findings support a mechanistic model in which latent T. gondii infection, potentially reactivated by herpesvirus co-infection may contribute to AD pathogenesis. Ato/Pro may protect by eliminating or suppressing T. gondii , while VZV vaccination may reduce viral triggers of parasite reactivation. These results point to novel preventive strategies and reinforce the infectious hypothesis of Alzheimer’s disease.

Article activity feed

  1. eLife Assessment

    This useful study raises interesting questions but provides inadequate evidence of an association between atovaquone-proguanil use (as well as toxoplasmosis seropositivity) and reduced Alzheimer's dementia risk. The findings are intriguing but they are correlative and hypothesis-generating with the strong possibility of residual confounding.

  2. Reviewer #1 (Public review):

    Summary:

    This useful study provides incomplete evidence of an association between atovaquone-proguanil use (as well as toxoplasmosis seropositivity) and reduced Alzheimer's dementia risk. The study reinforces findings that VZ vaccine lowers AD risk and suggests that this vaccine may be an effect modifier of A-P's protective effect. Strengths of the study include two extremely large cohorts, including a massive validation cohort in the US. Statistical analyses are sound, and the effect sizes are significant and meaningful. The CI curves are certainly impressive.

    Weaknesses include the inability to control for potentially important confounding variables. In my view, the findings are intriguing but remain correlative / hypothesis generating rather than causative. Significant mechanistic work needs to be done to link interventions which limit the impact of Toxoplasmosis and VZV reactivation on AD.

    Weaknesses:

    Major:

    (1) Most of the individuals in the study received A-P for malaria prophylaxis as it is not first line for Toxo treatment. Many (probably most) of these individuals were likely to be Toxo negative (~15% seropositive in the US), thereby eliminating a potential benefit of the drug in most people in the cohort. Finally, A-P is not a first line treatment for Toxo because of lower efficacy.

    (2) A-P exposure may be a marker of subtle demographic features not captured in the dataset such as wealth allowing for global travel and/or genetic predisposition to AD. This raises my suspicion of correlative rather than casual relationships between A-P exposure and AD reduction. The size of the cohort does not eliminate this issue, but rather narrows confidence intervals around potentially misleading odds ratios which have not been adjusted for the multitude of other variables driving incident AD.

    (3) The relationship between herpes virus reactivation and Toxo reactivation seems speculative.

    (4) A direct effect on A-P on AD lesions independent on infection is not considered as a hypothesis. Given the limitations above and effects on metabolic pathways, it probably should be. The Toxo hypothesis would be more convincing if the authors could demonstrate an enhanced effect of the drug in Toxo positive individuals without no effect in Toxo negative individuals.

    Minor:

    (5) "Clinically meaningful" should be eliminated from the discussion given that this is correlative evidence.

  3. Reviewer #2 (Public review):

    Summary:

    This manuscript examines the association between atovaquone/proguanil use, zoster vaccination, toxoplasmosis serostatus and Alzheimer's Disease, using 2 databases of claims data. The manuscript is well written and concise. The major concerns about the manuscript center around the indications of atovaquone/proguanil use, which would not typically be active against toxoplasmosis at doses given, and the lack of control for potential confounders in the analysis.

    Strengths:

    (1) Use of 2 databases of claims data.

    (2) Unbiased review of medications associated with AD, which identified zoster vaccination associated with decreased risk of AD, replicating findings from other studies.

    Weaknesses:

    (1) Given that atovaquone/proguanil is likely to be given to a healthy population who is able to travel, concern that there are unmeasured confounders driving the association.

    (2) The dose of atovaquone in atovaquone/proguanil is unlikely to be adequate suppression of toxo (much less for treatment/elimination of toxo), raising questions about the mechanism.

    (3) Unmeasured bias in the small number of people who had toxoplasma serology in the TriNetX cohort.

  4. Author response:

    Reviewer #1 (Public review):

    Summary:

    This useful study provides incomplete evidence of an association between atovaquone-proguanil use (as well as toxoplasmosis seropositivity) and reduced Alzheimer's dementia risk. The study reinforces findings that VZ vaccine lowers AD risk and suggests that this vaccine may be an effect modifier of A-P's protective effect. Strengths of the study include two extremely large cohorts, including a massive validation cohort in the US. Statistical analyses are sound, and the effect sizes are significant and meaningful. The CI curves are certainly impressive.

    Weaknesses include the inability to control for potentially important confounding variables. In my view, the findings are intriguing but remain correlative / hypothesis generating rather than causative. Significant mechanistic work needs to be done to link interventions which limit the impact of Toxoplasmosis and VZV reactivation on AD.

    We thank the reviewer for describing our study as useful and for highlighting several of its strengths, including the very large cohorts, sound statistical analyses, meaningful effect sizes, and the impressive CI curves. We also appreciate the reviewer’s recognition that our findings reinforce prior evidence linking VZV vaccination to reduced AD risk.

    Regarding the statement that the evidence remains incomplete due to “inability to control for potentially important confounding variables,” we refer to our introductory explanation above. As noted there, our analyses meet the accepted criteria for reproducible epidemiological evidence, and the assumption of uncontrolled confounding is contradicted by rigorous matching and by additional baseline evaluations. We fully agree that mechanistic work is warranted, and our epidemiologic findings strongly motivate such efforts.

    We address the reviewer’s specific comments in detail below.

    (1) Most of the individuals in the study received A-P for malaria prophylaxis as it is not first line for Toxo treatment. Many (probably most) of these individuals were likely to be Toxo negative (~15% seropositive in the US), thereby eliminating a potential benefit of the drug in most people in the cohort. Finally, A-P is not a first line treatment for Toxo because of lower efficacy.

    We agree that individuals in our cohort received Atovaquone-Proguanil (A-P) for malaria prophylaxis rather than for treatment of toxoplasmosis. However, this does not contradict our interpretation. Because latent CNS colonization by T. gondii is not currently considered clinically actionable, asymptomatic carriers are not offered treatment, and therefore would only receive an anti-Toxoplasma regimen unintentionally, through a medication prescribed for another indication such as malaria prophylaxis. Importantly, atovaquone is an established therapy for toxoplasmosis, including CNS disease, with documented efficacy and CNS penetration in current treatment guidelines. It is therefore reasonable to assume that, during the multi-week course typically administered for malaria prophylaxis, A-P would exert significant anti-Toxoplasma activity in individuals with latent CNS infection, potentially reducing or eliminating parasite burden even though the medication was not prescribed for that purpose.

    The reviewer notes that only ~15% of individuals in the U.S. are Toxoplasma-seropositive, based on surveys performed primarily in young adults of reproductive age (serologic testing is most commonly obtained in women during prenatal care). However, seropositivity increases cumulatively over the lifespan, and few reliable estimates exist for the age groups in which Alzheimer’s disease and dementia occur. Even if we accept the lower estimate of ~15% latent colonization in older adults, this proportion is still smaller than the lifetime cumulative incidence of dementia in the general population.

    Therefore, if latent toxoplasmosis contributes causally to dementia risk, and A-P is capable of eliminating latent Toxoplasma in the subset of individuals who harbor it, then a multi-week course of treatment—such as the one routinely taken for malaria prophylaxis—would be expected to produce a substantial reduction in dementia incidence at the population level, of the same order of magnitude reported here. A protective effect concentrated in a minority of exposed individuals is fully compatible with, and can mechanistically explain, the large overall reduction in risk that we observe.

    Finally, the reviewer notes that A-P is not a first-line treatment for toxoplasmosis due to assumed lower efficacy. This point does not undermine our results. Even a second-line agent, when administered over several weeks—as is routinely done for malaria prophylaxis—is expected to exert substantial anti-Toxoplasma activity. The long duration of exposure in large populations receiving A-P for travel provides a unique natural experiment that does not exist for other anti-Toxoplasma medications, which, when prescribed for their non-Toxoplasma indications, are not taken more than a few days. Thus, the widespread use of A-P for malaria prophylaxis allows a unique opportunity to evaluate long-term outcomes following inadvertent anti-Toxoplasma treatment.

    Moreover, “first line” recommendations in clinical guidelines refer to treatment of acute toxoplasmosis in immunosuppressed individuals, where tachyzoites are actively replicating. These guidelines do not consider efficacy against latent CNS colonization, which is dominated by bradyzoites, a biologically distinct form, in immunocompetent individuals. Therefore, the guideline hierarchy is not informative regarding which medication is more effective at clearing latent brain infection, the stage we consider most relevant to dementia risk.

    (2) A-P exposure may be a marker of subtle demographic features not captured in the dataset such as wealth allowing for global travel and/or genetic predisposition to AD. This raises my suspicion of correlative rather than casual relationships between A-P exposure and AD reduction. The size of the cohort does not eliminate this issue, but rather narrows confidence intervals around potentially misleading odds ratios which have not been adjusted for the multitude of other variables driving incident AD.

    We agree that prior to matching, A-P exposure may be associated with demographic features such as health or to travel internationally. However, this does not apply after matching. In all age-stratified analyses, exposed and control individuals were rigorously matched on all major risk factors known to influence dementia risk, including age, sex, race/ethnicity, smoking status, hypertension, diabetes, and obesity. Owing to the extremely large pool of individuals in TriNetX (~120M), our matching was performed stringently, producing exposed and unexposed cohorts that are near-identical with respect to the established determinants of dementia risk.

    The reviewer correctly identifies that large cohorts alone do not eliminate confounding; however, confounding must still be biologically and epidemiologically plausible. Any hypothetical confounder capable of producing a 50–70% reduction in dementia incidence over a decade would need to: (1) produce a very large protective effect against dementia; (2) be strongly associated with A-P exposure; and (3) remain entirely uncorrelated with age, sex, race/ethnicity, smoking, diabetes, hypertension and obesity, which have been rigorously matched. No such factor has been proposed. The suggestion that an unspecified ‘subtle demographic feature’ could produce effects of this magnitude remains hypothetical, and no such factor has been described in the dementia risk literature.

    If a specific evidence-supported confounder is proposed that meets these criteria, we would be pleased to test it empirically in our cohorts. In the absence of such a proposal, the interpretation that the association is merely “correlative rather than causal” remains speculative and does not negate the strength of a replicated, rigorously matched, long-term association across large cohorts in two national health systems.

    (3) The relationship between herpes virus reactivation and Toxo reactivation seems speculative.

    We respectfully disagree with the characterization of the herpesvirus–Toxoplasma interaction as speculative. The mechanism we describe is biologically valid, based on established virology and parasitology literature showing that latent T. gondii infection can reactivate from its bradyzoite state under inflammatory or immune-modifying conditions, including viral triggers. A published clinical report has documented CNS co-reactivation of T. gondii and a herpesvirus, explicitly noting that HHV-6 reactivation can promote Toxoplasma reactivation in neural tissue (Chaupis et al., Int J Infect Dis, 2016).

    Moreover, this mechanism is the only currently evidence-supported explanation that simultaneously and parsimoniously accounts for all of the epidemiologic observations in our study:

    (1) Substantially higher cumulative incidence of dementia in individuals with positive Toxoplasma serology, indicating that latent infection is a risk factor for subsequent cognitive decline;

    (2) Strong protective association following A-P exposure, a medication with established activity against Toxoplasma gondii, including in the CNS;

    (3) Independent protection conferred by VZV vaccination, observed consistently for two vaccines with distinct formulations (one live attenuated, one recombinant protein), whose only shared property is suppression of VZV reactivation;

    (4) Greater protective effect of A-P among individuals who were not vaccinated against VZV, consistent with a model in which dementia risk requires both herpesvirus reactivation and persistent latent Toxoplasma infection—such that reducing either factor alone (via VZV vaccination or anti-Toxoplasma suppression) substantially lowers risk.

    Taken together, these observations are difficult to reconcile under any alternative hypothesis.

    To date, we are unaware of any other biologically coherent mechanism that can explain all four findings simultaneously. We would welcome any alternative explanation capable of accounting for these converging epidemiologic signals, as such a proposal could meaningfully advance the scientific discussion. In the absence of a competing explanation, the interaction between latent toxoplasmosis and herpesvirus reactivation remains the most parsimonious hypothesis supported by current knowledge.

    Finally, while observational studies are inherently limited in their ability to provide causal inference, the mechanism we propose is biologically grounded and experimentally testable. Our results provide a strong rationale for mechanistic studies and clinical trials, and warrant publication precisely because they generate a verifiable hypothesis that can now be evaluated directly.

    (4) A direct effect on A-P on AD lesions independent on infection is not considered as a hypothesis. Given the limitations above and effects on metabolic pathways, it probably should be. The Toxo hypothesis would be more convincing if the authors could demonstrate an enhanced effect of the drug in Toxo positive individuals without no effect in Toxo negative individuals.

    A direct effect of A-P on AD established lesions is indeed possible, and this hypothesis would be of significant therapeutic interest. However, we did not consider it within the scope of our epidemiologic analyses because all cohorts explicitly excluded individuals with existing dementia. Under these conditions, proposing a disease-modifying effect on established Alzheimer’s lesions based on our data would itself be speculative. Evaluating such a mechanism would be better answered by mechanistic or interventional studies rather than inference from populations without baseline disease.

    We also agree that demonstrating a stronger protective effect among Toxoplasma-positive individuals would be informative. Unfortunately, this “natural experiment” cannot be performed using the available data: Toxoplasma serology is rarely ordered in older adults, and A-P exposure is itself uncommon, resulting in a cohort overlap far too small to yield valid statistical inference (n≈25 in TriNetX).

    Thus, while both proposed hypotheses are scientifically attractive and merit further study, neither can be resolved using currently available real-world clinical data. Our findings provide the rationale to investigate both hypotheses experimentally, and we hope our report will motivate such studies.

    Reviewer #2 (Public review):

    Summary:

    This manuscript examines the association between atovaquone/proguanil use, zoster vaccination, toxoplasmosis serostatus and Alzheimer's Disease, using 2 databases of claims data. The manuscript is well written and concise. The major concerns about the manuscript center around the indications of atovaquone/proguanil use, which would not typically be active against toxoplasmosis at doses given, and the lack of control for potential confounders in the analysis.

    Strengths:

    (1) Use of 2 databases of claims data.

    (2) Unbiased review of medications associated with AD, which identified zoster vaccination associated with decreased risk of AD, replicating findings from other studies.

    We thank the reviewer for the thoughtful assessment and for noting key strengths of our work, including (1) the use of two large national databases, and (2) the unbiased discovery approach that replicated the widely reported association between zoster vaccination and reduced Alzheimer’s disease (AD) risk. We agree that these features highlight the validity and reproducibility of the analytic framework.

    Below we respond to the reviewer’s perceived weaknesses.

    Weaknesses:

    (1) Given that atovaquone/proguanil is likely to be given to a healthy population who is able to travel, concern that there are unmeasured confounders driving the association.

    We agree that, prior to matching, A-P exposure may correlate with demographic or health-related differences (e.g., ability to travel). However, this potential bias was explicitly controlled for in the study design. Across all three age-stratified TriNetX cohorts, exposed and unexposed individuals were rigorously matched on all major established dementia risk factors: age, sex, race/ethnicity, smoking status, obesity, diabetes mellitus, and hypertension. Comparative analyses confirm that these risk factors are equivalently distributed at baseline.

    As noted in our response to Reviewer #1, for any hypothetical unmeasured confounder to explain the results, it would need to satisfy three conditions simultaneously:

    (1) Be capable of producing a 50–70% reduction in dementia incidence sustained over a decade and across three distinct age strata (ages 50–79);

    (2) Be strongly associated with likelihood of receiving A-P;

    (3) Remain entirely uncorrelated with age, sex, race/ethnicity, smoking, diabetes, hypertension, or obesity, all of which were rigorously matched and balanced at baseline.

    No such factor has been proposed in the literature or by the reviewer. Thus, the concern remains hypothetical and unsupported by any measurable demographic or biological mechanism.

    Importantly, empirical evidence contradicts the notion of a “healthy traveler” bias:

    Emergency and inpatient encounter rates prior to exposure were comparable between A-P users and controls. Across the three age-stratified cohorts, emergency visits were similar or slightly higher among A-P users (EMER: 19.6% vs 16.4%, 19.9% vs 14.2%, 22.0% vs 14.8%), and inpatient encounters were effectively equivalent (IMP: 14.8% vs 15.2%, 17.7% vs 17.6%, 22.1% vs 22.2%). These patterns directly contradict the suggestion that A-P users were a healthier or less medically burdened population at baseline.

    Prevalence of mild cognitive impairment was not lower among A-P users and was, in fact, slightly higher in the oldest cohort. Across the three age groups, baseline diagnoses of mild cognitive impairment (MCI) were comparable or slightly higher among exposed individuals (0.1% vs 0.1%, 0.3% vs 0.2%, 1.1% vs 0.6%). These data contradict the suggestion that A-P users had superior baseline cognition.

    The strongest protective association occurred in the youngest stratum (age 50–59; HR 0.34). At this age, when nearly all individuals are sufficiently healthy to travel internationally, A-P uptake is the least likely to confound health status. A frailty-based “healthy traveler” hypothesis would instead predict the opposite pattern, with older adults showing the greatest apparent benefit, since health limitations are more likely to restrict travel in later life. In contrast, the protective association weakens with increasing age, empirically contradicting any explanation based on differential travel capacity.

    In conclusion, the empirical evidence directly contradicts the existence of a ‘healthy traveler’ effect.

    (2) The dose of atovaquone in atovaquone/proguanil is unlikely to be adequate suppression of toxo (much less for treatment/elimination of toxo), raising questions about the mechanism.

    A few important points should address the reviewer’s concern:

    In our cohorts, A-P was prescribed for malaria prophylaxis, as correctly noted. In this setting, it is taken for the entire duration of travel, plus several days before and after, typically resulting in many weeks of continuous exposure. This creates an unintentional but scientifically valuable natural experiment, in which a CNS-penetrating anti-Toxoplasma agent is administered for long durations.

    Atovaquone is an established treatment for CNS toxoplasmosis, has strong CNS penetration, and is included in current clinical guidelines for acute toxoplasmosis in immunocompromised patients, although at higher doses. Because latent, asymptomatic CNS colonization is not treated in clinical practice, there are currently no data establishing the dose required to eliminate bradyzoite-stage Toxoplasma in immunocompetent individuals.

    Our observations concern atovaquone–proguanil (A-P), a fixed-dose combination of atovaquone with proguanil, a DHFR inhibitor targeting a key metabolic pathway shared by malaria parasites and T. gondii. The combination has well-established synergistic effects in malaria prophylaxis and the same mechanism would be expected to enhance anti-Toxoplasma activity. This fixed-dose regimen has never been formally evaluated for toxoplasmosis treatment at prolonged durations or against latent bradyzoite infection.

    Our hypothesis does not require or imply complete eradication of Toxoplasma. A clinically meaningful reduction in latent cyst burden among the subset of colonized individuals may be sufficient to alter long-term disease trajectories. Thus, a population-level decrease in dementia incidence does not require universal clearance of infection, but only partial suppression or reduction of parasite load in susceptible individuals, which is entirely compatible with the known pharmacology and duration of A-P exposure.

    (3) Unmeasured bias in the small number of people who had toxoplasma serology in the TriNetX cohort.

    The relatively small number of older adults with Toxoplasma serology stems from current clinical practice: serologic testing is mostly performed in women during reproductive years due to risks in pregnancy, whereas in older adults a positive result has no clinical consequence and therefore testing is rarely ordered.

    Importantly, the seropositive and seronegative groups were drawn from the same underlying population of individuals who underwent serology testing, and the only difference between groups is the test result itself. Because the decision to order a test is made prior to and independent of the result, there is no plausible rationale by which the serology outcome (positive or negative) would introduce a bias favoring either group beyond the result of the test itself.

    Furthermore, the two groups were here also rigorously matched on all major dementia risk factors, including age, sex, race/ethnicity, smoking, diabetes, hypertension, and BMI, and these characteristics are similarly distributed between groups. A small sample size does not imply bias; it simply reduces statistical power. Despite this limitation, the observed association (HR = 2.43, p = 0.001) remains strongly significant.

    Finally, this result is consistent with multiple published studies reporting higher rates of Toxoplasma seropositivity among individuals with Alzheimer’s disease, dementia, and even mild cognitive impairment, such that our finding reinforces a broader and independently observed epidemiologic pattern. Importantly, in our cohort the serology testing clearly preceded dementia diagnosis, which supports the plausibility of a causal rather than merely correlative relationship between latent toxoplasmosis and cognitive decline.

    To conclude our provisional response, we thank the editor and reviewers for raising points that will be further addressed and expanded upon in the discussion of the forthcoming revision. We welcome transparent scientific dialogue and acknowledge that, as with all observational research, residual confounding cannot be eliminated with absolute certainty. However, we disagree with the overall Assessment and emphasize that our findings—reproduced independently across two national health systems and three age-stratified cohorts, each rigorously matched on all major determinants of dementia risk, meet, and in many respects exceed, current standards for high-quality observational evidence.

    Assigning the results to “residual confounding” requires more than speculation: it requires identification of a confounding factor that is (1) anchored in established dementia risk literature, (2) empirically plausible, and (3) quantitatively capable of generating a sustained ~50 percent reduction in dementia incidence over a decade. No such factor has been identified to date. We note that the assertion of “residual confounding” has not been supported by a specific, quantitatively plausible mechanism. A hypothetical bias that is both extremely large in effect and uncorrelated with all major risk factors is not statistically or biologically credible.

    The explanation we propose, reduction in dementia risk through elimination of latent Toxoplasma gondii, is biologically grounded, directly supported by independent epidemiologic literature, and uniquely capable of accounting for all convergent observations in our data. No alternative hypothesis has been put forward that can plausibly explain these findings.

    A revised version of the manuscript will be submitted shortly, incorporating expanded baseline analyses, with the strictest possible exclusion criteria (including congenital, vascular, chromosomal, and neurodegenerative disorders such as Parkinson’s disease), and complete tabulated comparisons. These data will further reinforce that the observed protective associations are not attributable to any measurable confounding. We also plan to enhance the discussion in order to address the points raised by the reviewers.

    In light of the expanded analyses, any reservations expressed in the initial Assessment can now be re-evaluated on the basis of the empirical evidence. The findings reported in our study meet, and in several respects exceed, current epidemiologic standards for high-quality observational research, clearly warrant publication, and provide a robust scientific foundation for future mechanistic and interventional studies to determine whether elimination of latent toxoplasmosis can prevent or treat dementia.