Improving AlphaFold2 and 3-based protein complex structure prediction with MULTICOM4 in CASP16
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
As AlphaFold achieves high-accuracy tertiary structure prediction for most single-chain proteins (monomers), the next 2 frontier in protein structure prediction lies in accurately modeling multi-chain protein complexes (multimers). We developed MULTICOM4, the latest version of the MULTICOM system, to improve protein complex structure prediction by integrating transformer-based AlphaFold2, diffusion model based AlphaFold3, and our in-house techniques. These include protein complex stoichiometry prediction, diverse multiple sequence alignment (MSA) generation leveraging both sequence and structure comparison, modeling exception handling, and deep learning-based model quality assessment.
MULTICOM4 was blindly evaluated in the 16th community-wide Critical Assessment of Techniques for Protein Structure Prediction (CASP16) in 2024. In Phase 0 of CASP16, where stoichiometry information was unavailable, MULTICOM predictors performed best, with MULTICOM_human achieving a TM-score of 0.752 and a DockQ score of 0.584 for top-ranked predictions on average. In Phase 1 of CASP16, with stoichiometry information provided, MULTICOM_human remained among the top predictors, attaining a TM-score of 0.797 and a DockQ score of 0.558 on average. The CASP16 results demonstrate that integrating complementary AlphaFold2 and 3 with enhanced MSA inputs, comprehensive model ranking, exception handling, and accurate stoichiometry prediction can effectively improve protein complex structure prediction.