Regulation of polyamine interconversion enzymes affects α-Synuclein levels and toxicity in a Drosophila model of Parkinson’s Disease

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by α-synuclein accumulation and aggregation, leading to disrupted cellular homeostasis, impaired mitochondrial function, and neuroinflammation, ultimately causing neuronal death. Recent biomarker studies reveal elevated serum levels of L-ornithine-derived polyamines correlating with PD progression and clinical subtypes, though their precise role in PD pathology remains unclear. We investigated the impact of polyamine-interconversion enzymes (PAIEs) on α-synucleinopathy in a Drosophila melanogaster model of PD, evaluating key degenerative features such as lifespan, locomotor function, tissue integrity, and α-synuclein accumulation. Knockdown of ornithine decarboxylase 1 (ODC1), spermidine synthase (SRM), and spermine oxidase (SMOX) reduced α-synuclein toxicity, while suppression of spermidine/spermine N1-acetyltransferase 1 (SAT1) and spermine synthase (SMS) exacerbated it. Conversely, overexpressing SAT1 or SMOX significantly reduced α-synuclein toxicity, highlighting their potential role in PD. These findings underscore the critical role of polyamine pathways in modulating α-synuclein toxicity, offering novel therapeutic targets for PD.

Article activity feed